On the Numerical Solution of a Certain Nonlinear Integro-Differential Equation

S. H. Chang
Department of Mathematics, The Cleveland State University, Cleveland, Ohio 44115

AND
J. T. Day

Department of Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802

Received July 13, 1976; revised February 23, 1977

The writers give an existence and uniquencss theorem for a nonlinear integrodifferential equation which occurs in the statistical theory of turbulent diffusion. A numerical algorithm is given and computational examples considered.

Consider the nonlinear integro-differential equation
$u^{\prime}(t)+a(t) u(t)+\int_{0}^{t} k(t, s) u(t-s) u(s) d s=f(t), \quad 0 \leqslant t \leqslant L, \quad u(0)=c$,
where the functions $a(t), f(t)$, and $k(t, s)$ are continuous for $0 \leqslant t \leqslant L, 0 \leqslant s \leqslant L$, and c is a constant. Equations of this type occur as model equations for describing turbulent diffusion (see Velikson [5] and Monin and Yaglom [4]). In this note we prove an existence and uniqueness theorem for the equation and give a fourth-order numerical algorithm for solving it. Computational examples are also given.

Equation (1) can be transformed to an equivalent integral equation. Let

$$
\begin{equation*}
A(t)=-\int_{0}^{t} a(s) d s \tag{2}
\end{equation*}
$$

Multiplying Eq. (1) by $e^{A(t)}$, we obtain

$$
\left(e^{A(t)} u(t)\right)^{\prime}=e^{A(t)} f(t)-e^{A(t)} \int_{0}^{t} k(t, s) u(t-s) u(s) d s
$$

Integrating from 0 to t and noting that $u(0)=c$, we have

$$
\begin{align*}
& u(t)=c e^{-A(t)}+\int_{0}^{t} e^{-[A(t)-A(\tau)]} f(\tau) d \tau-\int_{0}^{t} e^{-[A(t)-A(\sigma)]} \\
& \times \int_{0}^{\sigma} k(\sigma, s) u(\sigma-s) u(s) d s d \sigma \tag{3}
\end{align*}
$$

which is equivalent to Eq. (1). Let

$$
\begin{align*}
(F(u))(t)= & c e^{-A(t)}+\int_{0}^{t} e^{-[A(t)-A(\tau)]} f(\tau) d \tau \\
& -\int_{0}^{t} e^{-[A(t)-A(\sigma)]} \int_{0}^{\sigma} k(\sigma, s) u(\sigma-s) u(s) d s d \sigma \tag{4}
\end{align*}
$$

Then Eq. (3) can be written as

$$
\begin{equation*}
u(t)=(F(u))(t) \tag{5}
\end{equation*}
$$

Let

$$
\begin{equation*}
u_{0}(t)=c e^{-A(t)}+\int_{0}^{t} e^{-[A(t)-A(\tau)]} f(\tau) d \tau \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n}(t)=\left(F\left(u_{n-1}\right)\right)(t), \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

Let $\|u\|=\max _{0 \leqslant t \leqslant L}|u(t)|$. We have the following theorem.
Theorem. Let $a(t) \geqslant 0$ for all t. If

$$
\begin{equation*}
|c|+\int_{0}^{L}|f(\tau)| d \tau \leqslant \frac{1}{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{L} \int_{0}^{\sigma}|k(\sigma, s)| d s d \sigma<\frac{1}{2} \tag{9}
\end{equation*}
$$

then the sequence $\left\{u_{n}\right\}$ determined by (6) and (7) converges uniformly to a unique solution of Eq. (1).

Proof. From (7), (4), and (6) we have

$$
\begin{aligned}
u_{n}(t)= & c e^{-A(t)}+\int_{0}^{t} e^{-[A(t)-A(\tau)]} f(\tau) d \tau \\
& -\int_{0}^{t} e^{-[A(t)-A(\sigma)]} \int_{0}^{\sigma} k(\sigma, s) u_{n-1}(\sigma-s) u_{n-1}(s) d s d \sigma \\
= & u_{0}(t)-\int_{0}^{t} e^{-[A(t)-A(\sigma)]} \int_{0}^{\sigma} k(\sigma, s) u_{n-1}(\sigma-s) u_{n-1}(s) d s d \sigma
\end{aligned}
$$

Since $a(t) \geqslant 0$, we have by (2), $A(t) \geqslant 0$ and increasing for all t. Thus

$$
\left|u_{n}(t)\right| \leqslant\left\|u_{0}\right\|+\left\|u_{n-1}\right\|^{2} \int_{0}^{t} \int_{0}^{\sigma}|k(\sigma, s)| d s d \sigma, \quad n=1,2, \ldots
$$

It follows from (8) and (9) that

$$
\begin{equation*}
\left\|u_{0}\right\| \leqslant|c|+\int_{0}^{L}|f(\tau)| d \tau \leqslant \frac{1}{2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{n}\right\| \leqslant\left\|u_{0}\right\|+\left\|u_{n-1}\right\|^{2} \int_{0}^{L} \int_{0}^{\sigma}|k(\sigma, s)| d s d \sigma<1 \tag{11}
\end{equation*}
$$

for $n=1,2, \ldots$.
Now, for any i and j, we have

$$
\begin{aligned}
& \left|\left(F\left(u_{i}\right)\right)(t)-\left(F\left(u_{j}\right)\right)(t)\right| \\
& \quad \leqslant \int_{0}^{t} e^{-[A(t)-A(\sigma)]} \int_{0}^{\sigma}|k(\sigma, s)|\left|u_{i}(\sigma-s) u_{i}(s)-u_{j}(\sigma-s) u_{j}(s)\right| d s d \sigma \\
& \quad \leqslant \int_{0}^{t} \int_{0}^{\sigma}|k(\sigma, s)|\left|u_{i}(\sigma-s)\left(u_{i}(s)-u_{j}(s)\right)+u_{j}(s)\left(u_{i}(\sigma-s)-u_{j}(\sigma-s)\right)\right| d s d \sigma \\
& \quad \leqslant\left\|u_{i}-u_{j}\right\|\left(\left\|u_{i}\right\|+\left\|u_{j}\right\|\right) \int_{0}^{t} \int_{0}^{\sigma}|k(\sigma, s)| d s d \sigma,
\end{aligned}
$$

and hence

$$
\left\|F\left(u_{i}\right)-F\left(u_{j}\right)\right\| \leqslant\left\|u_{i}-u_{j}\right\|\left(\left\|u_{i}\right\|+\left\|u_{j}\right\|\right) \int_{0}^{L} \int_{0}^{\sigma}|k(\sigma, s)| d s d \sigma
$$

Thus by (9), (10), and (11) there exists a positive number $\omega<1$ such that

$$
\left\|F\left(u_{i}\right)-F\left(u_{j}\right)\right\| \leqslant \omega\left\|u_{i}-u_{j}\right\|
$$

for all $i, j=0,1,2, \ldots$. Then by a standard argument similar to the proof of the contraction mapping theorem (see, for example, Kolmogorov and Fomin [2]), one can show that the sequence $\left\{u_{n}\right\}$ converges uniformly to a unique solution of Eq. (3). This completes the proof.

We next give a stepwise procedure for finding the numerical solution of Eq. (1). The method has $O\left(h^{4}\right)$ local truncation error. The algorithm allows us to express each u_{n} in terms of $u_{i}, i=0,1, \ldots, n-1$, and thus avoid iterations. The convergence of this numerical method is justified by Mocarsky's theorem [3, p. 236].

Integrating Eq. (1) from 0 to t, we obtain

$$
\begin{equation*}
u(t)=u(0)-\int_{0}^{t} a(\tau) u(\tau) d \tau+\int_{0}^{t} f(\tau) d \tau-\int_{0}^{t} \int_{0}^{z} k(z, s) u(z-s) u(s) d s d z \tag{12}
\end{equation*}
$$

To advance from $t=0$ to $t=h$ we approximate the integrals by Simpson's rule to obtain

$$
\begin{aligned}
u_{1}= & u_{\mathrm{a}}-(h / 6)\left(a_{0} u_{0}+4 a_{1 / 2} u_{1 / 2}+a_{1} u_{1}\right)+(h / 6)\left(f_{0}+4 f_{1 / 2}+f_{1}\right) \\
& -(h / 6)\left[4 \int_{0}^{h / 2} k(h / 2, s) u((h / 2)-s) u(s) d s+\int_{0}^{h} k(h, s) u(h-s) u(s) d s\right],
\end{aligned}
$$

where $u_{0}=u(0)=c, a_{0}=a(0), a_{1 / 2}=a(h / 2), a_{1}=a(h), f_{0}=f(0)$, etc. Approximating the inner integrals by the trapezoidal rule, we have

$$
\begin{align*}
u_{1}= & u_{0}-(h / 6)\left(a_{0} u_{0}+4 a_{1 / 2} u_{1 / 2}+a_{1} u_{1}\right)+(h / 6)\left(f_{0}+4 f_{1 / 2}+f_{1}\right) \\
& -\left(h^{2} / 6\right)\left[k(h / 2,0) u_{1 / 2} u_{0}+k(h / 2, h / 2) u_{0} u_{1 / 2}\right] \\
& -\left(h^{2} / 12\right)\left[k(h, 0) u_{1} u_{0}+k(h, h) u_{0} u_{1}\right] . \tag{13}
\end{align*}
$$

For the $u_{1 / 2}$ terms we use the following approximations in order to have $O\left(h^{4}\right)$ starting errors. For $u_{1 / 2}$ in the expression for $\int_{0}^{h} a(\tau) u(\tau) d \tau$, we apply the formula (see Hildebrand [1, p. 117, Problem 6])

$$
\begin{aligned}
u(x)= & \frac{\left(x_{1}-x\right)\left(x+x_{1}-2 x_{0}\right)}{\left(x_{1}-x_{0}\right)^{2}} u\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{\left(x_{1}-x_{0}\right)^{2}} u\left(x_{1}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x_{1}-x\right)}{x_{1}-x_{0}} u^{\prime}\left(x_{0}\right)+\frac{1}{6}\left(x-x_{0}\right)^{2}\left(x-x_{\mathrm{I}}\right) u^{\prime \prime \prime}(\xi)
\end{aligned}
$$

to obtain

$$
\begin{equation*}
u_{1 / 2}=\frac{3}{4} u_{0}+\frac{1}{4} u_{1}+(h / 4) u_{0}^{\prime}+O\left(h^{3}\right), \tag{14}
\end{equation*}
$$

where $u_{0}^{\prime}=u^{\prime}(0)=f(0)-a(0) u(0)=f(0)-c a(0)$. For $u_{1 / 2}$ in the expression for the double integral, we approximate it by

$$
\begin{equation*}
u_{1 / 2}=u_{0}+(h / 2) u_{0}^{\prime} . \tag{15}
\end{equation*}
$$

Substituting (14) and (15) into (13) and solving for u_{1}, we obtain

$$
u_{1}=Z_{1} / W_{1},
$$

where

$$
\begin{aligned}
Z_{1}= & u_{0}-(h / 6) a_{0} u_{0}-(h / 2) a_{1 / 2} u_{0}-\left(h^{2} / 6\right) a_{1 / 2} u_{0}^{\prime} \\
& +(h / 6)\left(f_{0}+4 f_{1 / 2}+f_{1}\right)-\left(h^{2} / 6\right)[k(h / 2,0)+k(h / 2, h / 2)]\left(u_{0}+(h / 2) u_{0}^{\prime}\right) u_{0}
\end{aligned}
$$

and

$$
W_{1}=1+(h / 6)\left(a_{1 / 2}+a_{1}\right)+\left(h^{2} / 12\right)[k(h, 0)+k(h, h)] u_{0} .
$$

To obtain u_{2} we evaluate Eq. (12) at $t=2 h$ and approximate the single integrals with Simpson's rule, the outer integral of the double integral with Simpson's rule, and the inner integral with the trapezoidal rule. We have

$$
\begin{aligned}
u_{2}= & u_{0}-(h / 3)\left(a_{0} u_{0}+4 a_{1} u_{1}+a_{2} u_{2}\right)+(h / 3)\left(f_{0}+4 f_{1}+f_{2}\right) \\
& -\left(2 h^{2} / 3\right)\left[k(h, 0) u_{1} u_{0}+k(h, h) u_{0} u_{1}\right] \\
& -\left(h^{2} / 3\right)\left[\frac{1}{2} k(2 h, 0) u_{2} u_{0}+k(2 h, h) u_{1}^{2}+\frac{1}{2} k(2 h, 2 h) u_{0} u_{2}\right] .
\end{aligned}
$$

Solving for u_{2}, we obtain

$$
u_{2}=Z_{2} / W_{2}
$$

where

$$
\begin{aligned}
Z_{2}= & u_{0}-(h / 3)\left(a_{0} u_{0}+4 a_{1} u_{1}\right)+(h / 3)\left(f_{0}+4 f_{1}+f_{2}\right) \\
& -\left(2 h^{2} / 3\right)[k(h, 0)+k(h, h)] u_{1} u_{0}-\frac{1}{3} h^{2} k(2 h, h) u_{1}^{2}
\end{aligned}
$$

and

$$
W_{2}=1+\frac{1}{3} h a_{2}+\frac{1}{6} h^{2}[k(2 h, 0)+k(2 h, 2 h)] u_{0}
$$

To obtain $u_{r}, r=3,4, \ldots, N$, we integrate Eq. (1) from $(r-1) h$ to $r h$ and then approximate the resulting equation using the Adams-Moulton h^{4} method. We have

$$
\begin{aligned}
u_{r}= & u_{r-1}-(h / 12)\left(5 a_{r} u_{r}+8 a_{r-1} u_{r-1}-a_{r-2} u_{r-2}\right) \\
& +(h / 12)\left(5 f_{r}+8 f_{r-1}-f_{r-2}\right)-(h / 12)\left[5 \int_{0}^{r h} k(r h, s) u(r h-s) u(s) d s\right. \\
& +8 \int_{0}^{(r-1) h} k((r-1) h, s) u((r-1) h-s) u(s) d s \\
& \left.-\int_{0}^{(r-2) h} k((r-2) h, s) u((r-2) h-s) u(s) d s\right]
\end{aligned}
$$

We then approximate the inner integrals with the trapezoidal rule to obtain

$$
\begin{aligned}
u_{r}= & u_{r-1}-(h / 12)\left(5 a_{r} u_{r}+8 a_{r-1} u_{r-1}-a_{r-2} u_{r-2}\right) \\
& +(h / 12)\left(5 f_{r}+8 f_{r-1}-f_{r-2}\right) \\
& -\left(5 h^{2} / 12\right)\left[\frac{1}{2} k(r h, 0) u_{r} u_{0}+\sum_{j=1}^{r-1} k(r h, j h) u_{r-j} u_{j}+\frac{1}{2} k(r h, r h) u_{0} u_{r}\right] \\
& -\left(8 h^{2} / 12\right)\left[\frac{1}{2} k((r-1) h, 0) u_{r-1} u_{0}+\sum_{j=1}^{r-2} k((r-1) h, j h) u_{r-1-j} u_{j}\right. \\
& \left.+\frac{1}{2} k((r-1) h,(r-1) h) u_{0} u_{r-1}\right]+\left(h^{2} / 12\right)\left[\frac{1}{2} k((r-2) h, 0) u_{r-2} u_{0}\right. \\
& \left.+\sum_{j=1}^{r 3} k((r-2) h, j h) u_{r-2-j} u_{j}+\frac{1}{2} k((r-2) h,(r-2) h) u_{0} u_{r-2}\right] .
\end{aligned}
$$

Solving for u_{r}, we have

$$
u_{r}=Z_{r} / W_{r}, \quad r=3,4, \ldots, N
$$

where

$$
\begin{aligned}
Z_{r}= & u_{r-1}-(h / 12)\left(8 a_{r-1} u_{r-1}-a_{r-2} u_{r-2}\right)+(h / 12)\left(5 f_{r}+8 f_{r-1}-f_{r-2}\right) \\
& -\left(5 h^{2} / 12\right) \sum_{j=1}^{r-1} k(r h, j h) u_{r-j} u_{j}-\left(8 h^{2} / 12\right)\left[\frac{1}{2} k((r-1) h, 0) u_{r-1} u_{0}\right. \\
& \left.+\sum_{j=1}^{r-2} k((r-1) h, j h) u_{r-1-j} u_{j} \left\lvert\, \frac{1}{2} k((r-1) h,(r-1) h) u_{0} u_{r-1}\right.\right] \\
& +\left(h^{2} / 12\right)\left[\frac{1}{2} k((r-2) h, 0) u_{r-2} u_{0}+\sum_{j=1}^{r-3} k((r-2) h, j h) u_{r-2-j} u_{j}\right. \\
& \left.+\frac{1}{2} k((r-2) h,(r-2) h) u_{0} u_{r-2}\right]
\end{aligned}
$$

and

$$
W_{r}=1+(5 h / 12) a_{r}+\left(5 h^{2} / 24\right)[k(r h, 0)+k(r h, r h)] u_{0}
$$

We consider the following computational examples.

Example 1

$$
\begin{aligned}
& u^{\prime}(t)-1 \frac{1}{8} e^{-2 t} u(t)+\int_{0}^{t} \frac{1}{2} e^{-(t+s)} u(t-s) u(s) d s=-\frac{1}{4} e^{-t}+\frac{1}{32} e^{-2 t}, \quad 0 \leqslant t \leqslant 10 \\
& u(0)=\frac{1}{4} .
\end{aligned}
$$

The exact solution is $u(t)=\frac{1}{4} e^{-t}$.
Example 2

$$
\begin{aligned}
u^{\prime}(t) & -\frac{2}{t+1} u(t)+\int_{0}^{t} \frac{1}{(t+1)^{2}(s+1)^{2}} u(t-s) u(s) d s \\
& =\frac{1}{48}\left[t+1-\frac{1}{(t+1)^{2}}\right], \quad 0 \leqslant t \leqslant 4 \\
u(0) & =\frac{1}{4}
\end{aligned}
$$

The exact solution is $u(t)=\frac{1}{4}(t+1)^{2}$.
Note that the conditions of our theorem are all satisfied. The approximate solutions are computed using the above algorithm. We list in Tables I and II the resulting errors. By error we mean

$$
\text { error }=\mid \text { exact value }- \text { approximate value } \mid
$$

The programs are written in FORTRAN in double precision for the IBM 370/158 computer at The Cleveland State University.

TABLE I
Errors for Example 1

t	$h=0.1$	$h=0.05$	$h=0.025$
0.025			4.18×10^{-10}
0.05	1.03×10^{-7}	6.60×10^{-9}	1.90×10^{-9}
0.1	4.01×10^{-7}	1.94×10^{-8}	6.95×10^{-10}
0.2	9.46×10^{-8}	3.56×10^{-8}	1.77×10^{-9}
0.3	4.74×10^{-7}	3.36×10^{-8}	1.06×10^{-8}
0.4	1.03×10^{-6}	7.08×10^{-9}	2.27×10^{-8}
0.6	1.45×10^{-6}	2.25×10^{-8}	4.92×10^{-8}
0.8	1.80×10^{-6}	4.22×10^{-8}	7.26×10^{-8}
1.0	3.15×10^{-6}	1.12×10^{-8}	9.05×10^{-8}
2.0	4.17×10^{-6}	9.08×10^{-8}	1.19×10^{-7}
4.0	4.33×10^{-6}	1.11×10^{-7}	1.12×10^{-7}
6.0	4.35×10^{-6}	1.13×10^{-7}	1.10×10^{-7}
8.0	4.36×10^{-6}	1.14×10^{-7}	1.09×10^{-7}
10.0		1.09×10^{-7}	

TABLE II
Errors for Example 2

t	$h=0.1$	$h=0.05$	$h=0.025$
0.025			1.00×10^{-9}
0.05	2.43×10^{-7}	1.57×10^{-8}	7.68×10^{-9}
0.1	1.66×10^{-6}	4.56×10^{-7}	3.04×10^{-8}
0.2	3.75×10^{-6}	9.81×10^{-7}	1.15×10^{-7}
0.3	6.48×10^{-6}	1.67×10^{-6}	4.47×10^{-7}
0.4	1.37×10^{-5}	3.48×10^{-6}	8.71×10^{-7}
0.6	2.28×10^{-5}	5.78×10^{-6}	1.45×10^{-6}
0.8	3.37×10^{-6}	8.52×10^{-6}	2.13×10^{-6}
1.0	1.10×10^{-4}	2.77×10^{-5}	6.94×10^{-6}
2.0	3.18×10^{-4}	5.49×10^{-5}	1.37×10^{-5}
3.0		8.92×10^{-5}	2.23×10^{-5}
.0			

References

1. F. B. Hildebrand, "Introduction to Numerical Analysis," 2nd ed., McGraw-Hill, New York, 1974.
2. A. N. Kolmogorov and S. V. Fomin, "Elements of the Theory of Functions and Functional Analysis," Vol. I, Graylock Press, Rochester, N.Y., 1957.
3. W. L. Mocarsky, Convergence of step-by-step methods for nonlinear integro-differential equations, J. Inst. Math. Appl. 8 (1971), 235-239.
4. A. S. Monin and A. M. Yaglom, "Statistical Hydromechanics" (Russian), Part 2, Nauka, Moscow, 1967.
5. B. A. Velikson, Solution of a non-linear integro-differential equation, U.S.S.R. Comput. Math. and Math. Phys. 15 (1975), 256-259.
